Internet Protocol (IP)

The Internet Protocol (IP) is the method or protocol by which data is sent from one computer to another on the Internet. Each computer (known as a host) on the Internet has at least one IP address that uniquely identifies it from all other computers on the Internet. When you send or receive data (for example, an e-mail note or a Web page), the message gets divided into little chunks called packets. Each of these packets contains both the sender's Internet address and the receiver's address. Any packet is sent first to a gateway computer that understands a small part of the Internet. The gateway computer reads the destination address and forwards the packet to an adjacent gateway that in turn reads the destination address and so forth across the Internet until one gateway recognizes the packet as belonging to a computer within its immediate neighborhood or domain. That gateway then forwards the packet directly to the computer whose address is specified.

Because a message is divided into a number of packets, each packet can, if necessary, be sent by a different route across the Internet. Packets can arrive in a different order than the order they were sent in. The Internet Protocol just delivers them. It's up to another protocol, the Transmission Control Protocol (TCP) to put them back in the right order.

IP is a connectionless protocol, which means that there is no continuing connection between the end points that are communicating. Each packet that travels through the Internet is treated as an independent unit of data without any relation to any other unit of data. (The reason the packets do get put in the right order is because of TCP, the connection-oriented protocol that keeps track of the packet sequence in a message.)

In the Open Systems Interconnection (OSI) communication model, IP is in layer 3, the Networking Layer (see Internet Protocol Suite).

The most widely used version of IP today is Internet Protocol Version 4 (IPv4). However, IP Version 6 (IPv6) is also beginning to be supported. IPv6 provides for much longer addresses and therefore for the possibility of many more Internet users. IPv6 includes the capabilities of IPv4 and any server that can support IPv6 packets can also support IPv4 packets.

Internet Protocol Suite

The Internet protocol suite is the set of communications protocols that implement the protocol stack on which the Internet runs. It is sometimes called the TCP/IP protocol suite, after the two most important protocols in it: the Transmission Control Protocol (TCP) and the Internet Protocol (IP), which were also the first two defined. The Internet Protocol Suite is shown in the table below:

Application layer HTTP, SMTP, FTP, SSH, IRC, SNMP, SIP ...
Transport layer TCP, UDP, ICMP, SCTP, RTP, DCCP ...
Network layer IPv4, IPv6, ARP ...
Data link layer Ethernet, Wi-Fi, Token ring, FDDI, ...

The Internet Protocol Suite can be described by analogy with the OSI model, which describes the layers of a protocol stack, not all of which correspond well with internet practice. In a protocol stack, each layer solves a set of problems involving the transmission of data, and provides a well-defined service to the higher layers. Higher layers are logically closer to the user and deal with more abstract data, relying on lower layers to translate data into forms that can eventually be physically manipulated.

The internet model was produced as the solution to a practical engineering problem. The OSI model, on the other hand, was a more theoretical approach, and was also produced at an earlier stage in the evolution of networks. Therefore, the OSI model is easier to understand, but the TCP/IP model is the one in actual use. It is helpful to have an understanding of the OSI model before learning TCP/IP, as the same principles apply, but are easier to understand in the OSI model.

See Internet Protocol Suite for an extensive discussion of the protocol suite and comparions with the OSI model.

Open Systems Interconnection (OSI)

Open Systems Interconnection (OSI) is a standard description or "reference model" for how messages should be transmitted between any two points in a telecommunication network. The reference model defines seven layers of functions that take place at each end of a communication. Although OSI is not always strictly adhered to in terms of keeping related functions together in a well-defined layer, many if not most products involved in telecommunication make an attempt to describe themselves in relation to the OSI model.

The main idea in OSI is that the process of communication between two end points in a telecommunication network can be divided into layers, with each layer adding its own set of special, related functions. Each communicating user or program is at a computer equipped with these seven layers of function. So, in a given message between users, there will be a flow of data through each layer at one end down through the layers in that computer and, at the other end, when the message arrives, another flow of data up through the layers in the receiving computer and ultimately to the end user or program. The actual programming and hardware that furnishes these seven layers of function is usually a combination of the computer operating system, applications (such as your Web browser), TCP/IP or alternative transport and network protocols, and the software and hardware that enable you to put a signal on one of the lines attached to your computer.

OSI divides telecommunication into seven layers. The layers are in two groups. The upper four layers are used whenever a message passes from or to a user. The lower three layers (up to the network layer) are used when any message passes through the host computer. Messages intended for this computer pass to the upper layers. Messages destined for some other host are not passed up to the upper layers but are forwarded to another host. The seven layers are:

See OSI Model for an extensive discussion of the OSI model and its relationship to real world implementations.


::: Made with CoffeeCup : Web Design Software & Website Hosting :::